RSS блога
Подписка
Блок питания MeanWell SDR-120-24, первый из шести
- Цена: $33.48
- Перейти в магазин
Не так давно я публиковал обзор качественного блока питания от известной фирмы MeanWell, сегодня пришла очередь еще одного «подопытного». В данном случае у меня на столе промышленный вариант под установку на DIN рейку.
Смотрим, разбираем, тестируем, все как обычно.
И так, мы имеем дело с блоком питания из промышленной серии. В данном случае это определено не только формфактором, а и выходным напряжением, так как блок питания имеет выходное напряжение в 24 Вольта, потому очень распространен именно в системах промышленной автоматики, хотя там применяются блоки питания и на другие напряжения, например 48 Вольт.
Данная модель блока питания производится с выходными напряжениями в 12, 24 и 48 Вольт, при этом длительный выходной ток соответственно 10, 5 и 2.5 Ампера.
Упаковка стандартна для блоков питания Менвелл, картонная коробка с двойным уплотнением и окошком, через которое видно наименование модели без вскрытия упаковки.
В комплекте нет никаких дополнений типа инструкций, гарантиек, проводов и т.п, только блок питания.
Блок питания выполнен в алюминиевом корпусе, одновременно выполняющим функции радиатора. Данный блок питания является продолжением линейки DR, но имеет уменьшенные размеры корпуса.
Чтобы не перечислять все размеры отдельно, приведу чертеж из описания.
Охлаждение пассивное, что также важно в тяжелых условиях эксплуатации, для вентиляции имеется перфорация сверху и снизу корпуса.
Обозреваемая модель одна из самых маломощных в данном исполнении корпуса, потому как существуют модели и почти в 1000 Ватт мощностью, причем также с пассивным охлаждением.
В верхней части корпуса находятся выходные клеммы, а также клеммы реле состояния питания. Блок питания может при помощи реле давать команду другим устройствам, что с питанием все в порядке.
Ниже установлен подстроечный резистор и светодиод — питание в норме.
Снизу клеммы подключения к сети и заземлению. Любопытно что указано не только то, с каким усилием требуется затягивать клеммы, а и то, что для разных клемм это усилие разное. Но кроме этого написано, что применять только медный провод.
Использованы клеммы с механизмом «лифтового» типа, гже поднимается площадка целиком, а не зажимного, что также дополнительно увеличивает надежность.
Механизм установки металлический с пластмассовым подпружиненным фиксатором. Т.е. сначала надо оттянуть фиксатор, потом установить блок питания на рейку, после этого отпустить фиксатор. Можно установить и без предварительного оттягивания фиксатора, защелкивается нормально.
Выше было сказано, что данная модель является продолжением популярной серии DR, потому логичным было бы сравнить внешне эти две серии.
Ниже на фото два блока питания с одинаковыми характеристиками в плане мощности и выходного напряжения., но разных серий, старой и новой.
Новый блок питания заметно уже, но при этом имеет большую глубину установки, что следует учитывать при замене.
Пора лезть внутрь. Для этого надо сначала снять механизм установки на рейку (три винта с потайной головкой), затем выкрутить два винта снизу (обычные) и два коротких винта по разным сторонам корпуса вверху (потайная головка).
Снимаем перфорированный кожух.
Все винтовые соединения зафиксированы краской.
Выкручиваем остальные винты, немного разжимаем кожух и вынимаем плату. Немного не понравилось то, что термопастой покрыта не вся площадь теплораспределительной пластины.
Блок схема устройства выглядит следующим образом:
1. Питание поступает на активный корректор мощности.
2. После корректора подключен инвертор блока питания, выполненный по обратноходовой схемотехнике.
3. Дальше выходной выпрямитель, фильтр, схема контроля выходного напряжения и аварии.
4. Кроме схемы обратной связи есть и схема защиты от перенапряжения на выходе, блокирующая работу инвертора.
Перечисленные выше узлы в обозреваемом блоке питания.
Входной фильтр весьма сложный, кроме привычного двухобмоточного дросселя установлены независимые дроссели по всем трем линиям (Фаза,, ноль, заземление).
В качестве элементов защиты присутствует предохранитель и варистор на напряжение 470 Вольт (амплитудного).
Кроме того установлены конденсаторы Х2 и Y1 типов.
Далее по цепи стоит еще один двухобмоточный дроссель, затем диодный мост с радиатором, а после этого еще один дроссель.
Уже после все этого включен активный ККМ, на фото видно его дроссель.
Если для обычных потребителей коррекция коэфициента мощности это в лучшем случае просто лучшая защищенность от колебаний входного напряжения, то для промышленных предприятий это бонус в виде меньшей реактивной мощности, за которую им приходится не только платить отдельно, а и следить за ее величиной и в случае превышения платить штраф.
Силовые элементы вынесены на двойную алюминиевую пластину, от которой тепло уже передается на корпус. В качестве дополнительной изоляции установлена пластина между силовыми элементами и остальной электроникой.
После корректора стоит конденсатор емкостью 100мкФ производства Nippon. В качестве токового шунта, для защиты от перегрузки, в цепи корректора установлен резистор номиналом 0.07 Ома.
Трансформатор блока питания кроме того что пропитан лаком, еще и намотан многопроволочным жгутом для улучшения характеристик. Я бы рискнул сказать, что применен литцендрат, но без разборки это сложно определить.
Узел трансформатора и выходного выпрямителя. В данном случае производитель решил поднять КПД за счет применения синхронного выпрямителя, потому на радиаторе стоит не диодная сборка, а транзистор IRFB4321. Типовое сопротивление открытого канала составляет 12 мОм, что при импульсном токе в 15 Ампер дает падение всего 0.18 Вольта, против примерно 0.5 у диодов Шоттки.
Остальные конденсаторы производства Rubicon, емкость после выпрямителя 3х1000 = 3000 мкФ, напряжение 35 Вольт.
Оптроны цепи обратной связи и защиты от перенапряжения по выходу.
По выходу установлен один помехоподавляющий дроссель, намотанный проводом приличного сечения. Также здесь установлено еще два конденсатора с емкостью 330 и 470 мкФ, что вместе с основными дает почти 4000мкФ суммарной емкости.
Здесь же находится и реле, которое выдает на выход сигнал о том, что с напряжением все в порядке.
На этот раз принципиальной схемы блока питания к сожалению не будет. Конечно можно было бы ее перечертить, но объем работы выходит слишком большим и пришлось бы частично распаять плату.
В плане безопасности я также не заметил каких либо проблем, плата имеет защитные прорези во всех опасных местах.
Немного о примененных компонентах.
1. Управляет блоком питания специализированный ШИМ контроллер TEA1750T объединяющий в себе как схему управления обратноходовым инвертором, так и управление активным ККМ.
2. В качестве защитного диода ККМ применен LT7B33
3. Синхронный выпрямитель управляется контроллером TEA1761.
4. В качестве токоизмерительного шунта на плате установлен резистор с номиналом в 5мОм. Это конечно немного снижает эффективность, но без этого резистора сложно обойтись, так как в отличии от диода, который все делает «аппаратно», здесь надо следить за током.
5. Контроль за выходным напряжением осуществляется при помощи счетверенного операционного усилителя LM224
6. Недалеко от ОУ находится некоторое количество стабилитронов, также участвующих в схеме защиты от перенапряжений.
Чтобы больше узнать о блоке питания, а точнее о его силовых элементах, пришлось снять теплораспределитель. Элементы прижаты к нему при помощи двух пластинок, широкой слева и узкой справа.
1. Транзистор ККМ — TK20J50D, 20 Ампер, 500 Вольт, 0.22 Ома. Правее расположен диод ККМ — BYV29X
2. Между элементами ККМ и транзисторов инвертора установлен биметаллический термостат — seki st-22 рассчитанный на 90градусов.
3. Высоковольтный транзистор преобразователя — TK13A65U, 13 Ампер, 650 Вольт, 0.32 Ома.
На этом этапе с осмотров все, можно перейти к тестам.
Для начала проверка выходного напряжения, диапазона регулировки и удобства установки.
Исходно было выставлено чуть больше, чем 24 Вольт, хотя на самом деле это неважно, так как даже если выставить 25 Вольт, то с оборудованием ничего не произойдет.
Диапазон регулировки вниз совсем маленький, не дотягивает даже до 23 Вольт, зато вверх можно установить почти до 29.
Хоть диапазон регулировки не очень большой, но установить точно напряжение довольно сложно, хотя возможно я уже просто придираюсь :)
Следующим шагом была оценка уровня пульсаций, нагрузочной способности, КПД, а так как блок питания содержит активный ККМ, то измерение и коэффициента мощности.
Я не буду показывать весь процесс, просто в конце сведу все в одну табличку, скажу лишь, что в данном тесте использовался привычный многим моим читателям тестовый стенд, состоящий из мультиметра, электронной нагрузки, а также ваттметра.
Ваттметр бытовой, потому значение КПД и коэффициента мощности приведено ориентировочное.
Уровень пульсаций при токах нагрузки — 1.2, 2.5, 3.8, 5, 6.5 и 7.5 Ампера.
В характеристиках было заявлено, что максимальный размах пульсаций составляет 100мВ, на осциллограмме выбран режим 50мВ на клетку, за заявленные пределы блок питания вышел при токе 7.5 Ампера, при токе в 6.5 Ампера размах пульсаций составлял 100мВ, но оба этих режима хоть и являются штатными, но превышают длительную заявленную мощность, потому блок питания проверку прошел.
Кроме того отмечу практически полное отсутствие пульсаций и акустического шума у блока питания в режиме холостого хода и при малых нагрузках.
Выше я написал про передельные режимы эксплуатации, здесь я сделаю небольшую оговорку, поясняющую, о чем идет речь.
Блок питания имеет мощность в 120 Ватт, при этом кратковременно может выдавать до 180 Ватт (150% от максимальной), но на время не более 3 секунд. В процессе выяснилось, что данное ограничение не только на бумаге. Блок питания автоматически отключается примерно через 8-10 секунд если ток нагрузки более 6 Ампер, защита триггерная, для восстановления нормального режима надо кратковременно снять входное питание.
На графике показано время нагрузки в 180 Ватт и требуемое время паузы, на самом деле я в экспериментах паузу делал значительно меньше, проблем не обнаружил, что говорит о том, что блок питания работает надежно.
Кроме оценки уровня пульсация на ВЧ, была и проверка на частоте 100 Гц. Осциллограмма снималась при токе нагрузки 2.5, 5, 6.5 и 7.5 Ампера, здесь также проблем не обнаружено.
Так как блок питания рассчитан на диапазон входного напряжения от 100 Вольт, то был проверен и при этом входном напряжении.
Хотя на самом деле напряжение было около 107-108 Вольт, так как в сети было 230, меньше сделать не вышло, но не думаю что это критично.
Для этого теста в качестве дополнения использовался трансформатор ТН-61 в режиме автотрансформатора.
На ВЧ я вообще не заметил разницы, даже скорее сказал бы, что при пиковой мощности уровень пульсаций даже снизился.
Так как блок питания оборудован активным ККМ, то и на частоте в 100 Гц осталось все также.
В комментариях к видео меня попросили посмотреть форму тока в первичной цепи, потому проверил и это.
В качестве шунта использовался проволочный резистор 0.47 Ома 1%.
Холостой ход.
Нагрузка 25, 50, 100 и 150%. Внимание, масштаб на осциллограммах разный, первая — 50мВ/дел, вторая 100 мВ/дел, две последние — 200мВ/дел.
После этого я решил устроить небольшой термопрогон, правда в открытом состоянии.
Ниже шесть термофотографий, верхние три — почти час при токе 5 Ампер и входном напряжении 230 Вольт, нижние при том же токе, но входном 108 Вольт. На фото хорошо видно, что увеличился нагрев в районе корректора, а особенно входного диодного моста, но во всех случаях самым горячим элементов является выходной трансформатор.
Дальше хотелось приблизить условия теста к тем, что бывают в местах применения данного блока питания, для этого был взят металлический ящик от какой-то сигнализации, вынута почти вся начинка и на боковую стенку установлен кусочек монтажной рейки, на которой я зафиксировал блок питания.
Ставим конструкцию вертикально, закрываем крышку и нагружаем током 5 Ампер на 1 час.
Из-а особенностей конструкции блока питания я не смог нормально измерить температуру отдельных узлов, пришлось использовать тепловизор, благо отверстия в корпусе большие, а самые критичные элементы стоят сразу около них.
Слева — выходной трансформатор, 72 градуса, справа дроссель корректора — 65 градусов.
Мне показалось, что все это слишком просто, так как блок питания рассчитан отдавать заявленную мощность при температуре окружающего воздуха до 60 градусов.
В итоге я немного усложнил тест, подняв ток до 5.5 Ампер, т.е. 110% нагрузки. Попутно в конце тесте измерил температуру воздуха внутри корпуса. К сожалению максимум, что я получил, 45 градусов.
В любом случае полезная информация есть, и ее вполне можно использовать. Самый греющийся компонент — выходной трансформатор, температура 81.6 градуса. Если поднять температуру на недостающие 15 градусов, то трансформатор прогрелся бы до 97, что хоть и много, но вполне терпимо, кроме того, не забываем что тест проходил при 110% выходной мощности.
Итоговая табличка с результатами тестирования.
Выходное напряжение держится нормально, причем у блока питания нет эффекта, когда при перегрузке напряжение падает, здесь напряжение фиксировано, но сам БП после превышения тока нагрузки выше 6 Ампер отключается через 8-10 секунд.
КПД был заявлен 91%, я же получил максимум 89%. В тесте измерения КПД при питании от 110 Вольт результат приблизительный, так как питание было через трансформатор, а вычитал я только 4 Ватта собственного потребления трансформатора.
В качестве итога могу сказать, что блок питания понравился, применены качественные комплектующие, качественная сборка, наличие комплекса защит как от перегрева, так и от перегрузки. Также не могу не отметить наличие активного ККМ и синхронного выпрямителя. Уровень пульсаций по выходу соответствует заявленным значениям, стабильность напряжения на выходе отличная. Имеется релейный выход состояния блока питания. Правда КПД оказался немного ниже заявленного значения, но здесь я грешу на низкую точность моего Ваттметра.
Единственное, что мне не очень понравилось, довольно приличный нагрев трансформатора. Лично на мой взгляд, производитель мог применить его с немного большей габаритной мощностью.
Но в любом случае, блок питания прошел все тесты и полностью работоспособен. В процессе тестов я его грел, нагружал током до 8 Ампер, коротил на ходу выход, но он продолжает нормально работать. Думаю что убить его будет тяжело :)
В качестве пояснения, почему «первый из шести» и о чем вообще речь + видеообзор и тест КЗ.
На этом у меня все, надеюсь что обзор был полезен.
Смотрим, разбираем, тестируем, все как обычно.
И так, мы имеем дело с блоком питания из промышленной серии. В данном случае это определено не только формфактором, а и выходным напряжением, так как блок питания имеет выходное напряжение в 24 Вольта, потому очень распространен именно в системах промышленной автоматики, хотя там применяются блоки питания и на другие напряжения, например 48 Вольт.
Данная модель блока питания производится с выходными напряжениями в 12, 24 и 48 Вольт, при этом длительный выходной ток соответственно 10, 5 и 2.5 Ампера.
Упаковка стандартна для блоков питания Менвелл, картонная коробка с двойным уплотнением и окошком, через которое видно наименование модели без вскрытия упаковки.
В комплекте нет никаких дополнений типа инструкций, гарантиек, проводов и т.п, только блок питания.
Блок питания выполнен в алюминиевом корпусе, одновременно выполняющим функции радиатора. Данный блок питания является продолжением линейки DR, но имеет уменьшенные размеры корпуса.
Чтобы не перечислять все размеры отдельно, приведу чертеж из описания.
Охлаждение пассивное, что также важно в тяжелых условиях эксплуатации, для вентиляции имеется перфорация сверху и снизу корпуса.
Обозреваемая модель одна из самых маломощных в данном исполнении корпуса, потому как существуют модели и почти в 1000 Ватт мощностью, причем также с пассивным охлаждением.
В верхней части корпуса находятся выходные клеммы, а также клеммы реле состояния питания. Блок питания может при помощи реле давать команду другим устройствам, что с питанием все в порядке.
Ниже установлен подстроечный резистор и светодиод — питание в норме.
Снизу клеммы подключения к сети и заземлению. Любопытно что указано не только то, с каким усилием требуется затягивать клеммы, а и то, что для разных клемм это усилие разное. Но кроме этого написано, что применять только медный провод.
Использованы клеммы с механизмом «лифтового» типа, гже поднимается площадка целиком, а не зажимного, что также дополнительно увеличивает надежность.
Механизм установки металлический с пластмассовым подпружиненным фиксатором. Т.е. сначала надо оттянуть фиксатор, потом установить блок питания на рейку, после этого отпустить фиксатор. Можно установить и без предварительного оттягивания фиксатора, защелкивается нормально.
Выше было сказано, что данная модель является продолжением популярной серии DR, потому логичным было бы сравнить внешне эти две серии.
Ниже на фото два блока питания с одинаковыми характеристиками в плане мощности и выходного напряжения., но разных серий, старой и новой.
Новый блок питания заметно уже, но при этом имеет большую глубину установки, что следует учитывать при замене.
Пора лезть внутрь. Для этого надо сначала снять механизм установки на рейку (три винта с потайной головкой), затем выкрутить два винта снизу (обычные) и два коротких винта по разным сторонам корпуса вверху (потайная головка).
Снимаем перфорированный кожух.
Все винтовые соединения зафиксированы краской.
Выкручиваем остальные винты, немного разжимаем кожух и вынимаем плату. Немного не понравилось то, что термопастой покрыта не вся площадь теплораспределительной пластины.
Блок схема устройства выглядит следующим образом:
1. Питание поступает на активный корректор мощности.
2. После корректора подключен инвертор блока питания, выполненный по обратноходовой схемотехнике.
3. Дальше выходной выпрямитель, фильтр, схема контроля выходного напряжения и аварии.
4. Кроме схемы обратной связи есть и схема защиты от перенапряжения на выходе, блокирующая работу инвертора.
Перечисленные выше узлы в обозреваемом блоке питания.
Входной фильтр весьма сложный, кроме привычного двухобмоточного дросселя установлены независимые дроссели по всем трем линиям (Фаза,, ноль, заземление).
В качестве элементов защиты присутствует предохранитель и варистор на напряжение 470 Вольт (амплитудного).
Кроме того установлены конденсаторы Х2 и Y1 типов.
Далее по цепи стоит еще один двухобмоточный дроссель, затем диодный мост с радиатором, а после этого еще один дроссель.
Уже после все этого включен активный ККМ, на фото видно его дроссель.
Если для обычных потребителей коррекция коэфициента мощности это в лучшем случае просто лучшая защищенность от колебаний входного напряжения, то для промышленных предприятий это бонус в виде меньшей реактивной мощности, за которую им приходится не только платить отдельно, а и следить за ее величиной и в случае превышения платить штраф.
Силовые элементы вынесены на двойную алюминиевую пластину, от которой тепло уже передается на корпус. В качестве дополнительной изоляции установлена пластина между силовыми элементами и остальной электроникой.
После корректора стоит конденсатор емкостью 100мкФ производства Nippon. В качестве токового шунта, для защиты от перегрузки, в цепи корректора установлен резистор номиналом 0.07 Ома.
Трансформатор блока питания кроме того что пропитан лаком, еще и намотан многопроволочным жгутом для улучшения характеристик. Я бы рискнул сказать, что применен литцендрат, но без разборки это сложно определить.
Узел трансформатора и выходного выпрямителя. В данном случае производитель решил поднять КПД за счет применения синхронного выпрямителя, потому на радиаторе стоит не диодная сборка, а транзистор IRFB4321. Типовое сопротивление открытого канала составляет 12 мОм, что при импульсном токе в 15 Ампер дает падение всего 0.18 Вольта, против примерно 0.5 у диодов Шоттки.
Остальные конденсаторы производства Rubicon, емкость после выпрямителя 3х1000 = 3000 мкФ, напряжение 35 Вольт.
Оптроны цепи обратной связи и защиты от перенапряжения по выходу.
По выходу установлен один помехоподавляющий дроссель, намотанный проводом приличного сечения. Также здесь установлено еще два конденсатора с емкостью 330 и 470 мкФ, что вместе с основными дает почти 4000мкФ суммарной емкости.
Здесь же находится и реле, которое выдает на выход сигнал о том, что с напряжением все в порядке.
На этот раз принципиальной схемы блока питания к сожалению не будет. Конечно можно было бы ее перечертить, но объем работы выходит слишком большим и пришлось бы частично распаять плату.
В плане безопасности я также не заметил каких либо проблем, плата имеет защитные прорези во всех опасных местах.
Немного о примененных компонентах.
1. Управляет блоком питания специализированный ШИМ контроллер TEA1750T объединяющий в себе как схему управления обратноходовым инвертором, так и управление активным ККМ.
2. В качестве защитного диода ККМ применен LT7B33
3. Синхронный выпрямитель управляется контроллером TEA1761.
4. В качестве токоизмерительного шунта на плате установлен резистор с номиналом в 5мОм. Это конечно немного снижает эффективность, но без этого резистора сложно обойтись, так как в отличии от диода, который все делает «аппаратно», здесь надо следить за током.
5. Контроль за выходным напряжением осуществляется при помощи счетверенного операционного усилителя LM224
6. Недалеко от ОУ находится некоторое количество стабилитронов, также участвующих в схеме защиты от перенапряжений.
Чтобы больше узнать о блоке питания, а точнее о его силовых элементах, пришлось снять теплораспределитель. Элементы прижаты к нему при помощи двух пластинок, широкой слева и узкой справа.
1. Транзистор ККМ — TK20J50D, 20 Ампер, 500 Вольт, 0.22 Ома. Правее расположен диод ККМ — BYV29X
2. Между элементами ККМ и транзисторов инвертора установлен биметаллический термостат — seki st-22 рассчитанный на 90градусов.
3. Высоковольтный транзистор преобразователя — TK13A65U, 13 Ампер, 650 Вольт, 0.32 Ома.
На этом этапе с осмотров все, можно перейти к тестам.
Для начала проверка выходного напряжения, диапазона регулировки и удобства установки.
Исходно было выставлено чуть больше, чем 24 Вольт, хотя на самом деле это неважно, так как даже если выставить 25 Вольт, то с оборудованием ничего не произойдет.
Диапазон регулировки вниз совсем маленький, не дотягивает даже до 23 Вольт, зато вверх можно установить почти до 29.
Хоть диапазон регулировки не очень большой, но установить точно напряжение довольно сложно, хотя возможно я уже просто придираюсь :)
Следующим шагом была оценка уровня пульсаций, нагрузочной способности, КПД, а так как блок питания содержит активный ККМ, то измерение и коэффициента мощности.
Я не буду показывать весь процесс, просто в конце сведу все в одну табличку, скажу лишь, что в данном тесте использовался привычный многим моим читателям тестовый стенд, состоящий из мультиметра, электронной нагрузки, а также ваттметра.
Ваттметр бытовой, потому значение КПД и коэффициента мощности приведено ориентировочное.
Уровень пульсаций при токах нагрузки — 1.2, 2.5, 3.8, 5, 6.5 и 7.5 Ампера.
В характеристиках было заявлено, что максимальный размах пульсаций составляет 100мВ, на осциллограмме выбран режим 50мВ на клетку, за заявленные пределы блок питания вышел при токе 7.5 Ампера, при токе в 6.5 Ампера размах пульсаций составлял 100мВ, но оба этих режима хоть и являются штатными, но превышают длительную заявленную мощность, потому блок питания проверку прошел.
Кроме того отмечу практически полное отсутствие пульсаций и акустического шума у блока питания в режиме холостого хода и при малых нагрузках.
Выше я написал про передельные режимы эксплуатации, здесь я сделаю небольшую оговорку, поясняющую, о чем идет речь.
Блок питания имеет мощность в 120 Ватт, при этом кратковременно может выдавать до 180 Ватт (150% от максимальной), но на время не более 3 секунд. В процессе выяснилось, что данное ограничение не только на бумаге. Блок питания автоматически отключается примерно через 8-10 секунд если ток нагрузки более 6 Ампер, защита триггерная, для восстановления нормального режима надо кратковременно снять входное питание.
На графике показано время нагрузки в 180 Ватт и требуемое время паузы, на самом деле я в экспериментах паузу делал значительно меньше, проблем не обнаружил, что говорит о том, что блок питания работает надежно.
Кроме оценки уровня пульсация на ВЧ, была и проверка на частоте 100 Гц. Осциллограмма снималась при токе нагрузки 2.5, 5, 6.5 и 7.5 Ампера, здесь также проблем не обнаружено.
Так как блок питания рассчитан на диапазон входного напряжения от 100 Вольт, то был проверен и при этом входном напряжении.
Хотя на самом деле напряжение было около 107-108 Вольт, так как в сети было 230, меньше сделать не вышло, но не думаю что это критично.
Для этого теста в качестве дополнения использовался трансформатор ТН-61 в режиме автотрансформатора.
На ВЧ я вообще не заметил разницы, даже скорее сказал бы, что при пиковой мощности уровень пульсаций даже снизился.
Так как блок питания оборудован активным ККМ, то и на частоте в 100 Гц осталось все также.
В комментариях к видео меня попросили посмотреть форму тока в первичной цепи, потому проверил и это.
В качестве шунта использовался проволочный резистор 0.47 Ома 1%.
Холостой ход.
Нагрузка 25, 50, 100 и 150%. Внимание, масштаб на осциллограммах разный, первая — 50мВ/дел, вторая 100 мВ/дел, две последние — 200мВ/дел.
После этого я решил устроить небольшой термопрогон, правда в открытом состоянии.
Ниже шесть термофотографий, верхние три — почти час при токе 5 Ампер и входном напряжении 230 Вольт, нижние при том же токе, но входном 108 Вольт. На фото хорошо видно, что увеличился нагрев в районе корректора, а особенно входного диодного моста, но во всех случаях самым горячим элементов является выходной трансформатор.
Дальше хотелось приблизить условия теста к тем, что бывают в местах применения данного блока питания, для этого был взят металлический ящик от какой-то сигнализации, вынута почти вся начинка и на боковую стенку установлен кусочек монтажной рейки, на которой я зафиксировал блок питания.
Ставим конструкцию вертикально, закрываем крышку и нагружаем током 5 Ампер на 1 час.
Из-а особенностей конструкции блока питания я не смог нормально измерить температуру отдельных узлов, пришлось использовать тепловизор, благо отверстия в корпусе большие, а самые критичные элементы стоят сразу около них.
Слева — выходной трансформатор, 72 градуса, справа дроссель корректора — 65 градусов.
Мне показалось, что все это слишком просто, так как блок питания рассчитан отдавать заявленную мощность при температуре окружающего воздуха до 60 градусов.
В итоге я немного усложнил тест, подняв ток до 5.5 Ампер, т.е. 110% нагрузки. Попутно в конце тесте измерил температуру воздуха внутри корпуса. К сожалению максимум, что я получил, 45 градусов.
В любом случае полезная информация есть, и ее вполне можно использовать. Самый греющийся компонент — выходной трансформатор, температура 81.6 градуса. Если поднять температуру на недостающие 15 градусов, то трансформатор прогрелся бы до 97, что хоть и много, но вполне терпимо, кроме того, не забываем что тест проходил при 110% выходной мощности.
Итоговая табличка с результатами тестирования.
Выходное напряжение держится нормально, причем у блока питания нет эффекта, когда при перегрузке напряжение падает, здесь напряжение фиксировано, но сам БП после превышения тока нагрузки выше 6 Ампер отключается через 8-10 секунд.
КПД был заявлен 91%, я же получил максимум 89%. В тесте измерения КПД при питании от 110 Вольт результат приблизительный, так как питание было через трансформатор, а вычитал я только 4 Ватта собственного потребления трансформатора.
В качестве итога могу сказать, что блок питания понравился, применены качественные комплектующие, качественная сборка, наличие комплекса защит как от перегрева, так и от перегрузки. Также не могу не отметить наличие активного ККМ и синхронного выпрямителя. Уровень пульсаций по выходу соответствует заявленным значениям, стабильность напряжения на выходе отличная. Имеется релейный выход состояния блока питания. Правда КПД оказался немного ниже заявленного значения, но здесь я грешу на низкую точность моего Ваттметра.
Единственное, что мне не очень понравилось, довольно приличный нагрев трансформатора. Лично на мой взгляд, производитель мог применить его с немного большей габаритной мощностью.
Но в любом случае, блок питания прошел все тесты и полностью работоспособен. В процессе тестов я его грел, нагружал током до 8 Ампер, коротил на ходу выход, но он продолжает нормально работать. Думаю что убить его будет тяжело :)
В качестве пояснения, почему «первый из шести» и о чем вообще речь + видеообзор и тест КЗ.
Пояснение
Данный блок питания был мне прислан одним из моих постоянных читателей специально для тестов. Куплен блок питания на ТаоБао, но так как фирма MeanWell представлена во многих местах, то по большому счету нет особой разницы где покупать, так как если это не явная подделка, то результаты будут одинаковы.
Так вот прислан мне был не один блок питания, а как вы уже догадались, шесть разных и сегодня «первая серия».
На своем канале я проводил опрос, какой блок питания тестировать первым и на момент начала теста у SDR-120-24 было больше всего голосов, что меня несколько удивило. Но так как по сути опрос продолжается, то теперь выбор уже из пяти моделей, хотя еще одну модельку я уже успел протестировать дополнительно.
Так вот прислан мне был не один блок питания, а как вы уже догадались, шесть разных и сегодня «первая серия».
На своем канале я проводил опрос, какой блок питания тестировать первым и на момент начала теста у SDR-120-24 было больше всего голосов, что меня несколько удивило. Но так как по сути опрос продолжается, то теперь выбор уже из пяти моделей, хотя еще одну модельку я уже успел протестировать дополнительно.
На этом у меня все, надеюсь что обзор был полезен.
Самые обсуждаемые обзоры
+58 |
3748
97
|
Пример: есть 100 БП, из которых за 5 лет сгорело 3шт и есть 100 БП вдвое дороже, из которых за 5 лет сгорел всего один. Вопрос — какие БП использовать выгоднее?
У нас еще другие есть, хотя со временем ломается все.
Окончание керxepa ему не понравилось :)
Может какой-то робот «растаЩЯт» посчитал криминалом и скрыл комментарий? :)
Как в анекдоте — хорошо попробовал, а то-бы вляпался :)
Сработало на окончание названия автомойщика
Мало того, использовать вдвое более дешевые выгоднее, даже если за срок службы сгорят все 100. При условии, что простой не влечет за собой издержек и работа по замене обходится бесплатно.
А без него устр-во не впишется в нормы ЕС, США и т.д.
Этот БП не может не шуметь. Вы делали тест на transient? Если вы не слышали шум, то это не значит что его нет вовсе. Для данного экземпляра шум может быть низким, но в другом, с менее удачной пропиткой, уровень может оказаться совсем другим.
Не шумит только тот БП, у которого фиксированная частота PWM. Да и то, «не факт».
P.S.
Да и вообще, тесты какие-то 'однобокие'. Включение — ток нагрузки держит, не перегревается? Уровень помех низкий (привет выходному LC и методике измерения)? — годный БП, можно брать.
А тесты-то где?
Кстати, частота «плывет» в основном в диапазоне примерно от нуля до 400-500мА нагрузки.
Тесты чего? Вроде все есть.
Диапазон регулировки
Пульсации ВЧ при разной нагрузке и напряжении 230/108 Вольт
Пульсации НЧ при разной нагрузке и напряжении 230/108 Вольт
Форма тока по входу при разной нагрузке
КПД
Коэффициент мощности
Нагрев
Зависимость выходного напряжения от нагрузки.
Но таким брэндам можно верить на слово, если магазин присутствует в списке официальных продавцов на сайте MW.
— работа под водой и в вакууме
— работа после падения с 25 этажа на асфальт
— работа на углях в мангале
— питание от ЛЭП 110кВ
Назвали бы колонку таблицы PF или КМ, а то коэфф P слишком нетрадиционно :)
Я как-то видел питание кучи камер от ATX БП просто в параллель :(
При этом на плате стоит LC фильтр + полисвитч + пара светодиодов. Один светодиод по выходу, второй параллельно полисвитчу.
Получившиеся 10 групп идут во внешние боксы с клеммниками, куда подключаются кабели от камер, там каждая линия делится на 6 или 8, с индивидуальными мелкими предохранителями. При этом можно сделать часть линий более мощными. Попутно на входе стоит пара керамических конденсаторов и светодиод индикации что питание зашло на плату.
В итоге получаем примерно 80 выходов питания. Камеры были еще аналоговые, потребление 100-300мА, среднее около 120-130мА, как раз загрузка 150 Ватт БП. Все работает уже примерно 8 лет. За все время один раз заменил БП, просто на всякий случай.
А если она с подогревом+ночное виденье и будете говорить что не не нужны?
БП делают обе, но совсем разные
Меа́ндр (по названию геометрического орнамента в виде ломаной линии) — периодический сигнал прямоугольной формы, широко используемый в радиотехнике и электронике. Длительность импульса и длительность паузы между импульсами в одном периоде такого сигнала равны. Другими словами, меандр — периодический прямоугольный сигнал со скважностью, равной 2 или, что то же самое, с коэффициентом заполнения 0,5.
а не о названии фирмы.
Спасибо, но желания нет…
Могу прислать для тестирования + еще пару блоков питания серии DR.
Но с возвратом.
Если интересно — напишите в личку.
2) DIN-варианты намного дороже IP20?
3) Сколько стоит киловатник?
P.S. В связи с массовым применением LED-лент на даче — подумываю о установке постоянно работающего источника 12В и низковольтовой проводке на свет.
2. Так IP20 варианты разные бывают, но в целом я бы рассчитывал на разницу раза в полтора.
3. У нас в магазине стоит около 270 долларов.
Интересно, какая будет температура, если заклеить вентиляционные отверстия бумажным скотчем? Мне кажется, это будет корректным тестом, т.к. в домашних условиях БП кидается где-нибудь в тумбочке с другими греющимися устройствами, где нет вентиляции и тепло-отвода.
ps. Для мощного питания можно взять серверные БП от старых серверов.
Минусы в сечении проводов и коммутации, приходится ставить реле непосредствено рядом со светильником.
Есть блоки позволяющие параллельное включение. Собственно всё есть на их сайте.
Дома живёт RSP-1500-12, но не пассивное охлаждение. Основное использование это ремонт вебаст. Обозревать не буду, лень.
На работе используется на 13.5В источник на пару киловатт с двумя блоками запаралелеными блоками, но сейчас таких на сайте нет, используется при программировании бмв. Тоже не пассивное охлаждение, один блок из пары бабуины ухитрились спалить, перепутав полярность подключения, вобщем всё ремонтопригодно сделано. Но какова логика при настройке блоков при параллельном включении, я так и не понял, мануалов нет, тупо выставить выходное напряжение на каждом блоке и потом подключить шлейф управления, даёт вариант перекоса при котором по сути работает один блок. Мануалов сервисных нет. Танцы с бубном конечно дали нужный результат, но развлечение было не быстрым.
У меня есть dr на 12в и еще пара других типов бп от минвелла.
Могу прислать для теста.
translate.google.ru/#en/ru/meanwell
Сейчас закончил тесты еще одного БП, только тест на нагрев занял около четырех часов.
И… ничего, норм ;-).
Предназначено для радиостанций и телеком аппаратуры.
Интересно его или аналогичный протестировать.
1. Производитель высылает тестовый экземпляр.
2. Вы присылаете для теста сами.
Но с учетом политической ситуации могут быть сложности с таможней.
В конце обзора есть видео, где я попутно демонстрирую что только на текущий момент у меня их несколько штук в ремонте лежит.
Но у нас тоже тяжелые условия, влажность, порошок и т.п. А вообще БП действительно хорошие.
цена на блок 24V 40A около 50т.р
Есть конечно и другие, но MeanWell не попадались ни разу и видимо неспроста, т.к деньги там считают…
фильтры EPCOS
Но я еще в первом обзоре писал, что Минвел не лучшие БП, просто очень хорошие.
Сименсы собраны хорошо, но схемотехника у них ещё та.
Но присоветйте, друзья — годный блок питания с регулятором подстройки напряжения с али, 200ват — 12 вольт.
Автомобильный аудио усилитель дома запитать.
Спасибо.
Если Бп запускается без нагрузки, то «усталость» конденсаторов обычно большой роли не играет.