Я выкладывал довольно много обзоров аккумуляторов и меня часто спрашивали — почему в обзорах нет измерения внутреннего сопротивления этих аккумуляторов. Ответ обычно был один — имеющиеся у меня приборы не позволяют измерять этот параметр корректно, потому смысла в измерениях нет. Но относительно недавно я разжился специализированным прибором, как раз предназначенным для подобных измерений.
Данное устройство относится к очень специфическому классу измерительных приборов, но допускаю что оно может пригодиться не только в работе с аккумуляторами.
Заказывался прибор на ТаоБао, в магазине известного китайского, даже не знаю как точно назвать, пусть будет кастомайзера — 100 MHz. На самом деле разницы где заказывать прибор особо не было, просто на тот момент у него была самая низкая цена, а кроме того у него же были и низкоомные резисторы.
Для начала что такое — внутреннее сопротивление аккумуляторов. Я не буду много расписывать и попробую пояснить хоть и грубо, но надеюсь что наглядно.
Представьте что существует идеальный аккумулятор, он не имеет ни саморазряда, ни внутреннего сопротивления, вот такой себе «сферический конь в ваккууме». Этот идеальный элемент находится внутри вашего аккумулятора, но также внутри него есть два неких резистора, один называется Rs, он включен последовательно с аккумулятором, второй — Rp, он соответственно включен параллельно, при этом:
Rs — это сопротивление и является — внутреннее последовательное сопротивление, оно отвечает за ток, который способен отдать аккумулятор.
Rp — а это сопротивление, которое разряжает ваш аккумулятор пока он лежит на полке.
Вообще все это несколько сложнее чем такая вот схематическая пара резисторов, так как аккумулятор является химическим элементом, но для общего понимания более чем достаточно.
Справа вторая схема, снаружи аккумулятора показаны также паразитные сопротивления, например контакты холдера, которые увеличивают последовательное сопротивление, и к примеру ваша схема, которая может иметь небольшое сопротивление и также разряжать аккумулятор.
Справедливости ради точно такая же картина наблюдается к примеру и у конденсаторов и называется этот параметр ESR (Эквивалентное Последовательное Сопротивление). Даже обычный дроссель из-за активного сопротивления обмотки тоже можно условно считать имеющим данный параметр.
И если в случае внешних компонентов мы можем что-то улучшить, например применить более качественные холдеры, а то и вообще припаять провода напрямую к аккумулятору, промыть плату или использовать менее потребляющие компоненты чтобы уменьшить утечки. То в случае внутренних параметров можно действовать только косвенно, например изменением температуры. С ростом температуры оба сопротивления уменьшаются и чтобы аккумулятор имел меньше саморазряд, то его хранят в прохладном месте, а чтобы имел меньшее внутреннее сопротивление, то используют «теплым».
Как же это все выглядит в реальной жизни, а не на виртуальных схемах.
Берем к примеру пару аккумуляторов, US18650VTC4 и LGDBHG21865 (более известные как шоколадки).
Так как внутреннее сопротивления является важным параметром, то оно почти всегда обозначается в даташите, например у первых оно составляет 12 мОм (0.012 Ома)
А у вторых до 17 мОм.
Фактически, внутреннее сопротивление и влияет на нагрев аккумулятора, проявляется это при работе под большим током.
Например 12 мОм при 15 Амперах дадут 0.18 Вольта падения, если 0.18 умножить на 15, то получим 2.7 Ватта в тепло.
Для второго аккумулятора все еще хуже, 17х15=0.255 Вольта и 0.255х15=3.825 Ватта.
Конечно это все очень грубо и утрированно, но наглядный пример ниже на фото, после полного разряда током 15 Ампер температура первого 70 градусов, а второго почти 80. Но кроме температуры больше падение напряжения под нагрузкой, что может быть критично для мощных потребителей, например электронных сигарет, электроинструмента, а также различных квадрокоптеров, машинок и пр.
Для измерения данного параметра можно использовать различные инструменты, но наиболее правильным является применение специализированных приборов и я в ходе обзора попробую объяснить, почему, а пока перейду к собственно обзору.
Получил я свой заказ упакованным в раздельные пакетики, в одном лежал прибор, во втором резисторы, так как они были заказаны вторым лотом.
Всего получается что я имею:
Прибор
Шупы к прибору
Тестовые резисторы.
Вариантов дополнительной комплектации у продавца много, я выбрал вариант прибор + щупы и его цена указана в заголовке, а также набор резисторов.
Резисторы были заказаны для последующей проверки точности работы прибора, как обозреваемого, так и других, имеющихся в хозяйстве. Стоит у продавца такой набор 1.64 доллара (на момент заказа было 1.48), что очень даже неплохо.
Номиналы резисторов
1. 1 мОм 1%
2. 2.2 мОм 0.5%
3. 10 мОм 0.5%
Резисторы имеют четырехпроводное подключение, рассчитаны на мощность до 10 Ватт и имеют возможность установки на радиатор.
А так как резисторы фирменные, производства Isabellenhütte, то бы найден и даташит на них, где указаны как параметры резисторов, так и их внутренняя конструкция. Из даташита можно узнать, что выпускаются резисторы и с точностью 0.1%, но у меня только 0.5 и 1.0%, что также неплохо, особенно при таких малых номиналах.
В комплекте были щупы в четырехпроводном варианте. Вообще практически во всех подобных приборах используется именно четырехпроводная схема подключения измеряемого компонента.
Здесь я процитирую мое же пояснение по поводу четырехпроводного подключения из другого обзора.
При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление.
Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.
Если говорить об измерении внутреннего сопротивления аккумуляторов, то подавляющее большинство популярных зарядных устройств типа Опуса, Литокалы, Аймакса и пр. используют двухпроводную схему. В моей электронной нагрузке, которую я использую для тестирования аккумуляторов подключение четырехпроводное, но провода соединяются около крокодилов и к аккумулятору подключаются в двух точках и даже если переделать кассету для аккумулятора так, чтобы подключение было четырехпроводным, ничего особо это все равно не даст, так как практически все эти устройства измеряют емкость при постоянном токе.
Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.
В реальной жизни это выглядит примерно так, как показано на схеме.
Но в случае измерения внутреннего сопротивления аккумуляторов, впрочем как и конденсаторов, использовать проверку постоянным током некорректно. Обусловлено это тем, что здесь принимает участие и химия, а также процессы происходящие в процессе заряда/разряда.
Потому принято измерять внутреннее сопротивление аккумуляторов на частоте 1 кГц, хотя у некоторых аккумуляторов указано сопротивление и для режима с постоянным током, на скриншоте заметно что значение при этом может значительно отличаться (верхнее при переменном, нижнее при постоянном). И если четырехпроводную схему еще можно «допилить», то сделать прибор с измерением при переменном токе несколько сложнее. Такой принцип используется в правильных тестерах аккумуляторов и измерителях ESR конденсаторов, да и вообще в LCR измерителях
Собственно это и есть ответ на вопрос, почему я не измеряю и другим не рекомендую это делать при помощи распространенных устройств «бытового» уровня, которые не имеют ни четырехпроводной схемы подключения, ни режима измерения на переменном токе.
Щупы представляют собой конструкцию из четырех подпружиненных контактов, вставленных в металлические трубки. В руках держать удобно, провода правда коротковаты, но довольно мягкие. Подключение к прибору при помощи USB разъема.
Также в комплекте дали четыре запасных контакта, часть которая подключается к тестируемому элементу выполнена в виде розочки, потому довольно неплохо держится на выводе компонента и не соскакивает.
Вариант подключения с использованием USB разъема выглядит несколько спорным, но лично на мой взгляд более чем удобен, а помимо нормального контакта еще и легко ремонтируемым.
К внешнему оформлению прибора претензий почти нет, аккуратная серая коробочка.
Все обозначения на кнопках выполнены на английском и китайском языках, впрочем и кнопок всего четыре, потому запутаться очень тяжело.
Краткие характеристики прибора есть снизу корпуса, полные выглядят следующим образом: Измерение сопротивления
Диапазон 20 мОм, разрешение 0,01 мОм, погрешность 0,7% + 7зн (когда включена функция ZR)
Диапазон 200 мОм, разрешение 0,1 мОм, погрешность 0,5% + 5зн
Диапазон 2 Ом, разрешение 1 мОм, погрешность 0,5% + 5зн
Диапазон 20 Ом, разрешение 10 мОм, погрешность 0,5% + 5зн
Диапазон 200 Ом, разрешение 0,1 Ом, погрешность 0,6% + 5зн
Измерение напряжения
Диапазон 2В, разрешение 0,001В, погрешность 0,8% + 5зн
Диапазон 20 В, разрешение 0,01 В, погрешность 0,8% + 5зн
Диапазон 28 В, разрешение 0,1 В, погрешность 0,8% + 5зн
На одном из торцов находится разъем подключения щупов и microUSB для заряда аккумулятора прибора. Когда делал фото, то обратил внимание что надписи «вверх ногами», потом у подумал что все логично, когда подключаете разъемы, то держите прибор экраном к себе и надписи читаются правильно, чаще встречал наоборот :)
Кнопка Power выполняет сразу несколько функций:
1. Собственно включение
2. При длительном нажатии — выключение, но дается запрос да/нет, «да» находится слева и это соответственно средняя кнопка.
3. При коротком нажатии вход в меню настроек, второе нажатие — выход из меню
Также коротким нажатием можно включить подсветку на примерно 10-15 секунд, подсветка умеет автоматически включаться при появлении напряжения на входе прибора, т.е. при подключении аккумулятора.
Справа расположены две кнопки — Range R и Range U, первая переключает диапазоны измерения сопротивления (авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом), вторая отвечает за диапазоны измерения напряжения (авто, 2 В, 20 В, 28 В).
У меня все время прибор работал в режимах авто, автопереключение быстрое, проблем не обнаружено, хотя пару раз в краях диапазонов не всегда переходило, но в данном случае это влияние гистерезиса автоматики.
1, 2. Средняя кнопка обозначена как Hold\ZEROR. Короткое нажатие — функция фиксации показаний, длительное — отключение функции автоматического удержания нуля. По умолчанию функция ZEROR включена (ZR на экране), а все измерения проводил именно в таком режиме. Можно запустить ее принудительно включив/выключив.
3, 4. Меню, вот здесь полный ад и рай одновременно, по пробую пояснить.
Ад — все на китайском, причем как я понял, большая часть приборов идут именно с китайским.
Рай — В нормально работающем и настроенном приборе вам делать нечего, все нормально работает «из коробки».
В интернете я нашел англоязычный вариант меню из которого следует что имеется: 1. Нормальный режим 2. Режим сортировки компонентов. 3. Время работы подсветки, 5-60 секунд 4. Время автовыключения прибора и перехода в энергосберегающий режим
автоотключение 5-60 минут
энергосберегающий режим — 5-30 минут 5. Настройка режима сортировки аккумуляторов
A — Ra<Rxa(установленное значение) Ua>Uxa(установленное значение)
B — Rb<Rxb(установленное значение) Ub>Uxb(установленное значение)
C — Rc<Rxc(установленное значение) Uc>Uxc(установленное значение)
6. Количество аккумуляторов в режиме сортировки
7. Калибровка
8. Сброс настроек на заводские
9. Ток заряда аккумулятора — 200/400 мА, по умолчанию 200 мА. Последний пункт в старой версии прибора отсутствует, хотя как по мне, то он особо и не нужен.
Снизу корпуса находится четыре самореза, потому устройство разбирается очень легко. правда у меня дисплей приклеился к фальшпанели, еле отклеил.
Разборка
Конструкция на вид хоть и не промышленная, но очень качественная.
Снизу установлен аккумулятор, емкость не проверял, как и время автономной работы. но неделю тестировал устройство в разных режимах, прибор как работал, так и работает, кушать пока не просит :)
Да, на этом этапе можно сказать, что обзор станет чуть короче, почти на всех микросхемах маркировка сошлифована :(
Но на всякий случай чуть поближе.
Узел питания, заряда аккумулятора и кнопки управления. Приятно удивило наличие на плате предохранителя в цепи аккумулятора, хотя сам аккумулятор также имеет собственную защиту.
«Мозги», видео явно микроконтроллер, а также пара подстроечных резисторов, предположительно один регулирует контраст дисплея, второй скорее всего стоит где нибудь в цепи коррекции, но ничего утверждать не могу и лучше их вообще не трогать.
Снизу «пищалка» и больше ничего.
Перед тестами пару слов о нюансах
1. Просто общий вид экрана, при разомкнутых щупах показывает перегрузку.
2. Если соединить щупы друг с другом, выводит 0
3,4. Но что удивило, при попытке измерить сопротивление кожи показывает ерунду. Хотя уже потом я понял что все логично, ведь прибор четырехпроводной и ему надо и соединение одноименных щупов.
Первым делом решено было проверить шунты. Хотя по большому счету это особо значения не имеет, так как результат будет зависеть от точности самого шунта и погрешности двух мультиметров одновременно.
Использовались два мультиметра:
UT61E в режиме измерения тока
UT181A в режиме измерения напряжения.
Возможно следовало подключить их наоборот, но этот эксперимент я уже не проводил.
Проверка проходила при двух контрольных значениях тока 1 и 5 Ампер, результаты измерения показали что:
Шунт 1 мОм имеет 0.997 мОм и 1.0008 мОм
Шунт 2.2 мОм — 2.206 мОм и 2.2076 мОм
Шунт 10 мОм — 10.021 мОм и 10.0214 мОм.
Показания при токе 1 и 5 Ампер немного отличаются, скорее всего из-за прогрева шунта амперметра, также в процессе были небольшие колебания последнего знака вольтметра, около ± 2 знака, но в любом случае показания совпадают с заявленными значениями.
1. Обозреваемый прибор также подключался к резисторам в четырехпроводном варианте.
2, 3, 4. Результаты просто отличные, сначала прибор показывает меньшее значение, но после пары секунд стабилизируется на показанном. Значение держится очень стабильно, лишь иногда может перескочить последний разряд на одну единицу.
А вот дальше я решил сравнить со своим RLC измерителем, но получил несколько странные результаты.
1. Установка нуля путем соединения через кусок медного провода.
2, 3. Резисторы 1 и 2.2 мОм все отлично
4. Резистор 10 мОм показывал 9.1-9.2 вместо 10
5, 6. просто ради любопытства тыкнул обычные 5% резисторы сопротивление 0.1 и 0.22 Ома, результат в принципе более-менее адекватный, что говорит о сложностях с линейностью именно в младшем диапазоне.
Взял те же резисторы 0.1 и 0.22 Ома и проверил их обозреваемым прибором, он показал сопротивление немного выше чем RLC измеритель.
Дальше я решил поэкспериментировать со своим предыдущим прибором. Для начала попробовал установить ноль прямым соединением щупов. Теперь все наоборот, 1 и 2.2 мОм показали завышенные результаты, а у остальных практически совпали с обозреваемым прибором.
У моего RLC метра декларируется 0.5% в базовом варианте и 0.3% при дополнительной калибровке. при 0.5% и 1.5 Ома диапазоне погрешность будет составлять +\- 0.75 мОм. Можно конечно сказать что результаты примерно совпадают в обоих случаях, но на самой границе диапазона, но как-то все равно «не то». Получается что для работы с малыми сопротивлениями надо применять один способ установки нуля, а с сопротивлениями 5 мОм и выше — другой. :(
Измерения выше проводились при частоте 1 кГц, как и у обозреваемого прибора, но после того как я перевел RLC на частоту 100 Гц, то картина стала заметно лучше. В общем думаю надо еще разбираться, так как RLC измеритель имеет дополнительные настройки и возможно есть шанс настроить линейность.
После этого решено проверить еще несколько резисторов:
1. 0.47 Ома 1%
2. 5.1 Ома 1%
3. 9.76 Ома 2%
4. 75 Ом 1%
Резисторы 9.76 и 75 Ом я дополнительно не проверял, а вот 0.1, 0.22 Ома, которые были показаны ранее, а также 0.47 и 5.1 Ома проверил предварительно по той же методике, что использовал при проверке шунтов.
В итоге было получено:
Резистор 0.1 Ома — 0.09817 Ома реально
0.22 Ома — 0.21721 Ома
0.47 Ома — 0.47054 Ома
5.1 Ома — 5.105 Ома.
И соответственно результаты полученные при помощи обозреваемого прибора, как по мне, то довольно неплохо.
Так как прибор предназначен для работы с аккумуляторами, то он помимо внутреннего сопротивления умеет измерять и напряжение. Максимальное входное напряжение до 28 Вольт и его лучше не превышать, а вот полярность может быть любой, просто напряжение отобразится со знаком минус.
В процессе теста я сравнил показания вольтметра с более точным прибором, результаты отличные, но почти во всех тестах прибор завышал результат на 1 знак, что вполне нормально для цифровых приборов.
Был проведен и дополнительный тест, для этого я взял конденсатор и три шунта показанные в самом начале обзора.
Сначала я измерил внутреннее сопротивление конденсатора, а затем подключал последовательно с конденсатором шунты и смотрел насколько полученный результат отличается от расчетного.
Результаты очень неплохие, подкачал тест с резистором 2.2 мОм, но я думаю что такая погрешность допустима.
И конечно аккумуляторы. Сначала я взял аккумулятор которому два года и по даташиту у него сопротивление 12 мОм.
2. В полностью заряженном состоянии — 12.46 мОм.
3. В разряженном — 12.68 мОм
4. А вот пример увеличение внутреннего сопротивления при низкой температуре. Разряженный аккумулятор был охлажден примерно до -20 градусов. В результате увеличение сопротивление составило почти 1.6 раза.
Для примера тест аккумуляторов относящихся к категории «подарить врагу».
1, 2. Желтый, заряжен и разряжен.
3, 4. Синий, заряжен и разряжен.
Как можно понять, это совсем мрак. Если установить такой аккумулятор в повербанк, то из-за высокого внутреннего сопротивления он отключится раньше даже не выработав полностью ту небольшую емкость которая есть у аккумулятора.
На фото напряжение на аккумуляторах как раз после разряда в повербанке.
А вот измерение сопротивление литий-железного аккумулятора. Конечно здесь сопротивление великовато, отчасти это обусловлено тем, что аккумулятор мелкий. Чем меньше размер аккумулятора, тем меньше площадь электродов, тем выше сопротивление. Впрочем даже в пределах одного формфактора сопротивление может отличаться, существуют «высокотоковые» аккумуляторы с низким сопротивлением и «высокоемкие» с более высоким сопротивлением, но и большей емкостью.
1. Сопротивление при комнатной температуре 114.4 мОм
2. Сопротивление при температуре -20 градусов — 140.9 мОм, или в 1.23 раза выше чем при +25.
У показанного выше US18650VTC4 разница составляла почти 1.6 раза, но могу сказать что если нагрузить аккумулятор, то за счет самопрогрева он быстро вернет сопротивление в нормальное состояние.
Уже скорее в качестве дополнения осциллограммы на щупах прибора.
1. Только выход источника тока.
2. Пары щупов соединены. Так как данный режим является основным при использовании прибора, то дальнейшие осциллограммы снимались с соединенными парами щупов.
Осциллограммы в разных режимах работы.
Авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом.
Видеоверсия обзора
И под конец небольшой бонус. Когда брал резисторы для проверки, то наткнулся на ленту с резисторами 0.1 Ома, по крайней мере именно так расшифровывается их маркировка — коричневый, черный, серебряный, золотой = 0.1 Ом, 5%
Но самое интересное выяснилось в процессе, Из 6 штук только 1 (один) имел сопротивление около 0.1 Ома, а у пяти было 0.224 Ома! Я даже проверял их в одной ленте, это отчетливо видно на фото.
Резисторы покупались в оффлайне, у проверенного продавца. правда как-то давно я уже встречал ошибочную маркировку, но там все резисторы в ленте были промаркированы некорректно, но чтобы так как здесь…
В качестве резюме могу сказать, что прибор однозначно понравился, как минимум высокой точностью и удобством пользования. Его можно применять как для измерения внутреннего сопротивления аккумуляторов, так и для проверки ESR конденсаторов и что также весьма важно — для измерения очень малых величин сопротивления.
Единственный пожалуй минус, это то, что меню полностью на китайском языке. Особенно это будет неудобно, если будет нужна функция сортировки, увы :( При обычной работе в меню лазить не приходится, все работает «как есть» и вполне нормально.
Как-то немного расстроили сложности при работе с моим RLC измерителем, надо еще разбираться почему такое происходит. Как было выяснено, по большому счет он «со скрипом» пролазит в указанные 0.5%, но при двух разных вариантах получается смещение в одну или другую сторону, при этом при 100Гц показания корректны.
Спонсором данного обзора выступил посредник yoybuy.com, который взял на себя оплату доставки.
Стоимость прибора + комплекта резисторов вместе с доставкой к посреднику выходит около 30 долларов, стоимость доставки от посредника зависит от разных факторов. На всякий случай информация о весе, прибор со щупами — 153 грамма, резисторы — 15 грамм, информация со страницы заказа у посредника.
На этом у меня все, надеюсь что обзор был полезен, а также буду рад вопросам и предложениям тестов.
Планирую купить+26Добавить в избранноеОбзор понравился+74
+104
У меня тоже тех. образование, но описание в начале обзора о внутреннем сопротивлении аккумуляторов даже я прочитал с удовольствием. Отослал своим товарищам-коллегам, что бы понимали, что такое внутреннее сопротивление. Так просто и доходчиво я бы объяснить не смог.
интересно, в какой области должно быть тех. образование, чтобы «внутреннее сопротивление» было в новинку?
(ни в коем случае не наезд и не претензия! искренний интерес, возможно мне предстоит слом шаблонов и пр.)
и еще посоветуйте пожалуйста где купить пассивные элементы для проверки точности мультиметра в разных режимах, точные резисторы, конденсаторы, индуктивности?
А ссылка та же самая что и на прибор, там на странице много разных сопутствующих товаров.
где купить пассивные элементы для проверки точности мультиметра в разных режимах, точные резисторы, конденсаторы, индуктивности?
Чаще важнее не где купить, а где их потом проверить. А так просто смотрите фирменные компоненты с высокой точности на ибее, могут быть как здесь, после распайки каких-то устройств.
абсолютная точность мне не критична, интересует чтобы во времени показания не сильно плыли, ну т.е. чтобы можно было через год при той же температуре сравнить мультиметры, как они ушли по своим же показаниям от «эталона».
или может есть известные домашне-радиолюбительские способы поддержания во времени точности приборов?
боюсь вникать в тему, надеюсь обойтись простыми решениями в виде мер.
Не технарь, просто полистал красивые картинки и почитал выводы. ^__^ Благодарю за труд)
Для обычного пользователя, у которого в наличии Opus, где почитать (желательно табличку)
сопротивлений аккумуляторов, чтобы просеять свою коллекцию АКБ самых разных АА, ААА и 18650е. И оставить годные! Т.к. часть фонарей не включают макс режим на старых АА (((
Уже второй месяц время от времени пишу обзор на YR1035. Смотрю уже два обзора за это время появилось :) Прибор хороший. Как руки все-таки дойдут, выложу еще данные по сравнению с поверенным 6.5 разрядным мультиметром
Так они, может не все, умеют измерять сопротивление
Да, сопротивления Кельвинами измерял. Но там тоже есть нюансы. Сложно что-то измерить в районе 1-2мОм и меньше, хотя разрешение у мультиметра 0.1мОм. Сначала его надо пол-часа прогревать, потом фильтрацию включать. И все-равно скачет сопротивление до 0.5мОм, ловит наводки (там ток измерения всего 1мА). При этом у китайца на тех же диапазонах очень стабильно показывает
урвал себе за пол-цены новый. еще и поверку сделали
Если аппарат типа 8505 то он новый около 12к баксов стоит, не слабо так «для дома, для семьи» :)
У таких аппаратов есть большой минус, если случайно спалить, очень жалко будет :(
А, ну тогда нормально. Дисплей у него теплый, душевный, :)
Я вот все никак на новый осцилл не решусь, всегда кажется — ну добавить еще 50 баксов и будет еще лучше и так до бесконечности…
Хотел купить micsig, так выяснилось что для моих работ он принципиально не подходит.
Хотел купить micsig, так выяснилось что для моих работ он принципиально не подходит
есть классный вариант купить на ибее tektronix tds744 — около 600-700. и потом его переделать легко в tds784 (там три резистора перепаиваются). в этоге получим 1GHz полосу и 4GS. я вот уже который месяц задумываюсь
по моим прикидкам в моем бп должно быть 3-10uV в полосе 1Гц-100кГц (есть там один проект, долго рассказывать). но по прикидкам это одно, а реально измерить нечем. а если измерять шумы обычных линейных стабилизаторов, там уже можно чего попроще поискать
то готовое меньше 200$-300$ надеяться не приходится
ну я где-то так и думал
можно собрать
там MAX44241, у него 9nV/vHz в полосе до 10kHz и 25nV/vHz от 10kHz до 100kHz. что сильно много для моих целей. надо не более 4-5 до 100kHz
Диапазон широковат при серьезном разрешении, тут уже скорее придется анализатором спектра смотреть.
Можно посмотреть у LT в AN124 (в приложение D) приводится список усилителей пригодных для измерения шумов.
Например у AM502: <6nV/rtHz при >1kHz и поймать можно за 50$. Правда зная тектроникс с его любовью к уникальному подбору компонентов — это серьезная лотерея (будет после ремонта — не будет давать характеристики).
я к нему присматривался. но потом почитал на EEV о реальных измерениях AM502 — там шумы достаточно большие. ну и еще к нему фрейм покупать, который не легкий. итого доставка 502 и фрейма + оплата самих девайсов те же 300 долларов потянет
приводится список усилителей пригодных для измерения шумов
тут все несколько проще. есть замечательный оу AD797, у которого 1nV/rtHz аж до 1Mhz. и есть уже готовый проект на нем tangentsoft.net/elec/lnmp. возможно по нему и соберу, но есть один минус — его надо будет потом на чем-то настроить
На мой взгляд прибор однозначно стоящий, что 1030, что 1035.
Как руки все-таки дойдут, выложу еще данные по сравнению с поверенным 6.5 разрядным мультиметром
Это конечно любопытно, спору нет, но практический смысл стремится к нулю, даже моего мультиметра там за глаза, хотя у 1035 разрешение вольтметра на порядок выше, насколько я помню.
Ну вот мостик Витстона можно использовать для измерения малых сопротивлений, а вот внутренне сопротивление аккумуляторов на частоте 1 кГц это как по мне цена на песок в Африке, предпочитаю измерять его по закону Ома для полной цепи на рабочем токе. Полученное в результате значение хоть о чем-то говорит.
внутренне сопротивление аккумуляторов на частоте 1 кГц это как по мне цена на песок в Африке, предпочитаю измерять его по закону Ома для полной цепи на рабочем токе.
Давайте я Вам просто один из примеров расскажу.
Есть такие штуки как датчики влажности, конструкция очень проста, пара электродов и специальное покрытие.
Угадайте, почему их сопротивление измеряется при переменном токе, а не при постоянном?
При постоянном тоже можно измерять, но очень недолго.
Ну это понятно, электрохимия, но для аккумуляторов это все равно странный показатель. Внутреннее сопротивление, например, имеет некоторую зависимость от тока нагрузки, опять же по причине «химичности» источника тока.
Измерение сопротивления переменному току позволяет быстро оценить работоспособность аккумулятора. Это сопротивление слабо зависит от того, заряжена ячейка или разряжена, заряжается или разряжается. Быстро и очень удобно, особенно, когда батарея в непрерывной эксплуатации.
Золото и только золото.
Был у меня пульт ду к ТВ Горизонт.
Контакты из «отечественного ширпотребного металла» окислялись каждые 3-4 дня и батарейки просто переставали работать.Вот такое было сопротивление.
Надоело быстро, вынимать батарейки и протирать спиртом контакты.
Срезал с СВЧ транзисторов позолоченные лепестки и напаял на контакты батарейного отсека.И забыл о проблеме.
Подробно, тщательно и без излишеств в части внутреннего сопротивления.
ИМХО вводная часть полезна не только школьникам, но и гуманитариям.
Обзор написан немного перефразируя «не щадя времени своего».
За все это +++.
P.S. Не смог понять смысл осциллограмм, там нагрузкой прибора является входное сопротивление осциллографа?
Т.е. заряд-разряд акка во время измерения? Или подключение-отключение нагрузки/зарядки?
Переменный ток это тот, который ходит по проводу туда-сюда, меняя направление (потому и переменный), а включение/отключение это только туда, но периодически, ходит/не ходит.
Здесь первый вариант.
тогда копать в сторону паразитной индуктивности? (Lw:)
Да вряд ли, индуктивность резисторов мала для того чтобы влиять на 1кГц, скорее тонкости в калибровке.
Причем интересно что проявляется в таком малом диапазоне.
Насколько я понимаю, точнее он только в режиме измерения напряжения, в плане измерения сопротивления то же самое.
Насчет разъемов вопрос спорный, как по мне, то при аккуратном использовании и USB нормально, лично мне показалось удобным.
Поступил на работу в НИИ. В резюме указал что стал специалистом после прочтения всех 383 обзоров Кирича. Трудоустроили без проблем, еще и к зарплате надбавку сделали как ценному специалисту и профессионалу.
Тоже приобрел и собрал китайский RLC от XJW01. Если активное сопротивление и ёмкость мерит более-менее, то ESR — просто пипец, может и в два раза ошибаться. Расстроен. Возможно надо копать в сторону расширенной калибровки, но уж очень скудная документация, если можно так сказать…
У меня ещё есть два ESR-метра: Венгер и из Радио. Они показывают, например, около 6 Ом, а китаец аж 12 Ом!!! И показания всё время прыгают… Но это не на всех конденсаторах. Обычно, например, Венгер показывает 2.2 Ом, а китаец 2.7 Ом. Всё-равно многовато будет!
Там разные принципы измерения. Из журнала Радио измеряется дельта U, т.е. на постоянном токе, измеряется только активное сопротивление. Венгерский измеритель, как я понял, работает на частоте LC-резонанса, а сопротивление получает расчетным методом. У меня, кстати, тоже у китайца версия 5.5.
Чем меньше ESR, тем меньше разница в показаниях, на мой взгляд это из-за частоты тестового сигнала, т.к. у китайца частоты до 10кГц, а у «Венгер» и «из Радио» видимо ближе к 100кГц.
P.S. Проверял как-то на разных частотах маленькие емкости, так там тоже разница доходила до 2х и более раз по ESR, в зависимости от частоты тестового сигнала.
Давно присматривался к ESR Micro, уже хотел купить, но увидел ссылку на RLC2 от Олега (инструкция по сборке и наладке) и решил ещё и его собрать :) Прям вот конкретно напало желание собирать ESR измерители. Хотя реально прибор нужен был раза три в жизни, когда чинил блоки питания.
Чем меньше размер аккумулятора, тем меньше площадь электродов, тем выше сопротивление.
Вроде бы от площади электродов зависит емкость, а максимальный ток (внутреннее сопротивление) зависит от толщины электродов :) Поэтому в одном размере аккумуляторы могут быть или с бОльшей емкостью, но с меньшим током, или с бОльшим током, но с меньшей емкостью :)
Обзор хороший, однако я ожидал от него сравнения показаний этого прибора с распространёнными, например, с Опусом и Литокалой. Разумеется, точность будет несоизмерима, но насколько, хотя бы приблизительно.
У меня Е7-10, с четырёхпроводной схемой подключения, однако, я не пробовал замерять внутреннее сопротивление аккумов, и не знаю, как это делать.
однако я ожидал от него сравнения показаний этого прибора с распространёнными, например, с Опусом и Литокалой.
Это не имеет смысла, так как кроме того что они имеют совсем другой принцип измерения, так еще и двухпроводное подключение плюс зависимость от силы прижима контактов и степени заряженности аккумулятора. Ну и у меня дома нет ни опуса, ни литокалы.
Жаль, так как у очень многих имеются подобного типа зарядные устройства. А вот веры им нет, и было бы очень интересно узнать, насколько эти зарядники врут, определяя внутреннее сопротивление.
насколько эти зарядники врут, определяя внутреннее сопротивление.
На все 100%, можете не сомневаться. Нельзя вывести некую «формулу правды» к устройству, которое изначально некорректно измеряет.
Тем более что результаты от экземпляра к экземпляру будут отличаться, т.е. сравнение с неким «Опусом в вакууме» не имеет смысла.
Смысл имеет. Хотя бы для того, чтобы окончательно развеять хотя бы малейшую уверенность в адекватности измерений. Ведь моя Литокала на разных аккумуляторах показывает различные значения. Причём только на различных типах. С одной батареи совпадают.
Правильно ли я понимаю, что все остальные зарядки и мультиметры не так точно считают внутреннее сопротивление, чем этот?
Очень жаба давит отдавать кроме цены зарядки еще и такой измеритель покупать.
Может можно как то обойтись другими приборами?
Мультиметры такое вообще не измеряют, а зарядные измеряют не совсем так, но хуже другое — выдают нестабильный результат, т.е. можно 5 раз измерить и получить пять разных значений.
Если бы не тех.образование в прошлой жизни, то наверное не осилил бы это прочитать)
(ни в коем случае не наезд и не претензия! искренний интерес, возможно мне предстоит слом шаблонов и пр.)
педагогический опыт— с другой«Атас, чему учили тогда вас».
и еще посоветуйте пожалуйста где купить пассивные элементы для проверки точности мультиметра в разных режимах, точные резисторы, конденсаторы, индуктивности?
Чаще важнее не где купить, а где их потом проверить. А так просто смотрите фирменные компоненты с высокой точности на ибее, могут быть как здесь, после распайки каких-то устройств.
или может есть известные домашне-радиолюбительские способы поддержания во времени точности приборов?
боюсь вникать в тему, надеюсь обойтись простыми решениями в виде мер.
но самое смешное было то, что покупается обычно на тао «ребенок», а не «товар»
Благодарю за труд)
Для обычного пользователя, у которого в наличии Opus, где почитать (желательно табличку)
сопротивлений аккумуляторов, чтобы просеять свою коллекцию АКБ самых разных АА, ААА и 18650е.
И оставить годные! Т.к. часть фонарей не включают макс режим на старых АА (((
Вопрос немного не в тему: а где брали соединители (т.е. провода, щупы, ...) для 4х проводной схемы измерения?
https://aliexpress.com/item/item/Original-true-four-line-YR1035-high-precision-lithium-battery-internal-resistance-test-instrument-Ni-MH-Ni/32841415262.html
ebay.com/itm/371846442341
У таких аппаратов есть большой минус, если случайно спалить, очень жалко будет :(
Я вот все никак на новый осцилл не решусь, всегда кажется — ну добавить еще 50 баксов и будет еще лучше и так до бесконечности…
Хотел купить micsig, так выяснилось что для моих работ он принципиально не подходит.
Ну а для оценки можно собрать:
www.radiokot.ru/forum/viewtopic.php?p=2020818#p2020818
ну я где-то так и думал
там MAX44241, у него 9nV/vHz в полосе до 10kHz и 25nV/vHz от 10kHz до 100kHz. что сильно много для моих целей. надо не более 4-5 до 100kHz
Можно посмотреть у LT в AN124 (в приложение D) приводится список усилителей пригодных для измерения шумов.
Например у AM502: <6nV/rtHz при >1kHz и поймать можно за 50$. Правда зная тектроникс с его любовью к уникальному подбору компонентов — это серьезная лотерея (будет после ремонта — не будет давать характеристики).
тут все несколько проще. есть замечательный оу AD797, у которого 1nV/rtHz аж до 1Mhz. и есть уже готовый проект на нем tangentsoft.net/elec/lnmp. возможно по нему и соберу, но есть один минус — его надо будет потом на чем-то настроить
Это конечно любопытно, спору нет, но практический смысл стремится к нулю, даже моего мультиметра там за глаза, хотя у 1035 разрешение вольтметра на порядок выше, насколько я помню.
вам крайне рекомендую попытаться ознакомиться с "одним из предыдущих" (©serge_petrov:) обзором на YR1035 от INN36
Есть такие штуки как датчики влажности, конструкция очень проста, пара электродов и специальное покрытие.
Угадайте, почему их сопротивление измеряется при переменном токе, а не при постоянном?
При постоянном тоже можно измерять, но очень недолго.
Был у меня пульт ду к ТВ Горизонт.
Контакты из «отечественного ширпотребного металла» окислялись каждые 3-4 дня и батарейки просто переставали работать.Вот такое было сопротивление.
Надоело быстро, вынимать батарейки и протирать спиртом контакты.
Срезал с СВЧ транзисторов позолоченные лепестки и напаял на контакты батарейного отсека.И забыл о проблеме.
ИМХО вводная часть полезна не только школьникам, но и гуманитариям.
Обзор написан немного перефразируя «не щадя времени своего».
За все это +++.
P.S. Не смог понять смысл осциллограмм, там нагрузкой прибора является входное сопротивление осциллографа?
Здесь первый вариант.
т.е. с частотой 1кГц переключается заряд-разряд, значит…
тогда копать в сторону паразитной индуктивности? (Lw:)
Причем интересно что проявляется в таком малом диапазоне.
Насчет разъемов вопрос спорный, как по мне, то при аккуратном использовании и USB нормально, лично мне показалось удобным.
ГерманаINN36 все нет. :(P.S. Проверял как-то на разных частотах маленькие емкости, так там тоже разница доходила до 2х и более раз по ESR, в зависимости от частоты тестового сигнала.
У меня Е7-10, с четырёхпроводной схемой подключения, однако, я не пробовал замерять внутреннее сопротивление аккумов, и не знаю, как это делать.
Тем более что результаты от экземпляра к экземпляру будут отличаться, т.е. сравнение с неким «Опусом в вакууме» не имеет смысла.
Очень жаба давит отдавать кроме цены зарядки еще и такой измеритель покупать.
Может можно как то обойтись другими приборами?
Прекрасные у вас обзоры =)
Там даже есть фотка с экрана с английским меню, Vapcell вроде продавал, но думаю новые версии проще найти именно с английским.
Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.